EPJ Web of Conferences (Jan 2018)
On a Class of Hermite Interpolation Polynomials for Nonlinear Second Order Partial Differential Operators
Abstract
This article is devoted to the problem of construction of Hermite interpolation formulas with knots of the second multiplicity for second order partial differential operators given in the space of continuously differentiable functions of two variables. The obtained formulas contain the Gateaux differentials of a given operator. The construction of operator interpolation formulas is based on interpolation polynomials for scalar functions with respect to an arbitrary Chebyshev system of functions. An explicit representation of the interpolation error has been obtained.