Frontiers in Human Neuroscience (Jun 2016)

EEG and eye tracking demonstrate vigilance enhancement with challenge integration

  • Indu Prasad Bodala,
  • Indu Prasad Bodala,
  • Junhua eLi,
  • Nitish V Thakor,
  • Nitish V Thakor,
  • Hasan eAL-Nashash

DOI
https://doi.org/10.3389/fnhum.2016.00273
Journal volume & issue
Vol. 10

Abstract

Read online

Maintaining vigilance is possibly the first requirement for surveillance tasks where personnel are faced with monotonous yet intensive monitoring tasks. Decrement in vigilance in such situations could result in dangerous consequences such as accidents, loss of life and system failure. In this paper, we investigate the possibility to enhance vigilance or sustained attention using ‘challenge integration’, a strategy that integrates a primary task with challenging stimuli. A primary surveillance task (identifying an intruder in a simulated factory environment) and a challenge stimulus (periods of rain obscuring the surveillance scene) were employed to test the changes in vigilance levels. The effect of integrating challenging events (resulting from artificially simulated rain) into the task were compared to the initial monotonous phase. EEG and eye tracking data is collected and analyzed for n = 12 subjects. Frontal midline theta power and frontal theta to parietal alpha power ratio which are used as measures of engagement and attention allocation show an increase due to challenge integration (p < 0.05 in each case). Relative delta band power of EEG also shows statistically significant suppression on the frontoparietal and occipital cortices due to challenge integration (p < 0.05). Saccade amplitude, saccade velocity and blink rate obtained from eye tracking data exhibit statistically significant changes during the challenge phase of the experiment (p < 0.05 in each case). From the correlation analysis between the statistically significant measures of eye tracking and EEG, we infer that saccade amplitude and saccade velocity decrease with vigilance decrement along with frontal midline theta and frontal theta to parietal alpha ratio. Conversely, blink rate and relative delta power increase with vigilance decrement. However, these measures exhibit a reverse trend when challenge stimulus appears in the task suggesting vigilance enhancement. Moreover, the mean reaction time is lower for the challenge integrated phase (RT mean = 3.65 ± 1.4 secs) compared to initial monotonous phase without challenge (RT mean = 4.6 ± 2.7 secs). Our work shows that vigilance level, as assessed by response of these vital signs, is enhanced by challenge integration.

Keywords