Microbiology Spectrum (Feb 2023)

Biological and Genomic Characteristics of MaMV-DH01, a Novel Freshwater Myoviridae Cyanophage Strain

  • Li-Hui Meng,
  • Fei Ke,
  • Qi-Ya Zhang,
  • Zhe Zhao

DOI
https://doi.org/10.1128/spectrum.02888-22
Journal volume & issue
Vol. 11, no. 1

Abstract

Read online

ABSTRACT The genomic traits of cyanophages and their potential for metabolic reprogramming of the host cell remain unknown due to the limited number of studies on cyanophage isolates. In the present study, a lytic Microcystis cyanophage, MaMV-DH01, was isolated and identified. MaMV-DH01 has an icosahedral head approximately 100 nm in diameter and a tail 260 nm in length. Its burst size is large, with approximately 145 phage particles/infected cell; it has a latent period of 2 days, and it shows high stability under pH and temperature stresses. Multiple infection (multiplicity of infection [MOI] 0.0001 to 100) results showed that when the MOI was 0.0001, MaMV-DH01 needed a longer time to lyse host cells. Cyanophage MaMV-DH01 has a double-stranded DNA genome of 182,372 bp, with a GC content of 45.35% and 210 predicted open reading frames (ORFs). These ORFs are related to DNA metabolism, structural proteins, lysis, host-derived metabolic genes, and DNA packaging. Phylogenetic trees based on the whole genome and two conserved genes (TerL and capsid) indicate that MaMV-DH01 is clustered with Ma-LMM01 and MaMV-DC, which are independent of other cyanophages. Collinearity analysis showed that the complete genome of MaMV-DH01 was longer than those of Ma-LMM01 and MaMV-DC, with lengths of 20,263 bp and 13,139 bp, respectively. We verified the authenticity of these excess DNA fragments and found that they are involved to various degrees in the MaMV-DH01 transcription process. Map overlays of environmental virus macrogenomic reads onto the MaMV-DH01 genome revealed that viral sequences similar to that of MaMV-DH01 are widespread in the environment. IMPORTANCE A novel freshwater Myoviridae cyanophage strain, MaMV-DH01, was isolated; this strain infects Microcystis aeruginosa FACHB-524, and the biological and genomic characteristics of MaMV-DH01 provide new insights for understanding the mechanism by which cyanophages infect cyanobacterial blooms.

Keywords