Respiratory Research (Oct 2018)

cGMP interacts with tropomyosin and downregulates actin-tropomyosin-myosin complex interaction

  • Lihui Zou,
  • Junhua Zhang,
  • Jingli Han,
  • Wenqing Li,
  • Fei Su,
  • Xiaomao Xu,
  • Zhenguo Zhai,
  • Fei Xiao

DOI
https://doi.org/10.1186/s12931-018-0903-z
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background The nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling pathway, plays a critical role in the pathogenesis of pulmonary arterial hypertension (PAH); however, its exact molecular mechanism remains undefined. Methods Biotin-cGMP pull-down assay was performed to search for proteins regulated by cGMP. The interaction between cGMP and tropomyosin was analyzed with antibody dependent pull-down in vivo. Tropomyosin fragments were constructed to explore the tropomyosin-cGMP binding sites. The expression level and subcellular localization of tropomyosin were detected with Real-time PCR, Western blot and immunofluorescence assay after the 8-Br-cGMP treatment. Finally, isothermal titration calorimetry (ITC) was utilized to detect the binding affinity of actin-tropomyosin-myosin in the existence of cGMP-tropomyosin interaction. Results cGMP interacted with tropomyosin. Isoform 4 of TPM1 gene was identified as the only isoform expressed in the human pulmonary artery smooth muscle cells (HPASMCs). The region of 68-208aa of tropomyosin was necessary for the interaction between tropomyosin and cGMP. The expression level and subcellular localization of tropomyosin showed no change after the stimulation of NO-sGC-cGMP pathway. However, cGMP-tropomyosin interaction decreased the affinity of tropomyosin to actin. Conclusions We elucidate the downstream signal pathway of NO-sGC-cGMP. This work will contribute to the detection of innovative targeted agents and provide novel insights into the development of new therapies for PAH.

Keywords