ChemistryOpen (Sep 2019)

Electron Transfer and Electron Excitation Processes in 2,5‐Diaminoterephthalate Derivatives with Broad Scope for Functionalization

  • Aleksandra Markovic,
  • Dr. Leon Buschbeck,
  • Prof. Dr. Thorsten Klüner,
  • Prof. Dr. Jens Christoffers,
  • Prof. Dr. Gunther Wittstock

DOI
https://doi.org/10.1002/open.201900138
Journal volume & issue
Vol. 8, no. 9
pp. 1176 – 1182

Abstract

Read online

Abstract Derivatives of 2,5‐diaminoterephthalate (DAT) are efficient fluorescence dyes that are also redox‐active, thus allowing for the electrochemical manipulation of spectral properties. The electrochemical behaviour of seven DAT derivatives was studied by cyclic voltammetry in dichloromethane. In the absence of a proton donor, DATs should be oxidized in two one‐electron steps. The first step is usually quasi‐reversible while the second step is either quasi‐reversible or irreversible. Some electrochemical properties such as the formal potentials and the ratio between the anodic and the cathodic current were determined from the cyclic voltammograms. Correlation between the formal potential of first oxidation and the absorption or the fluorescence emission wavelengths are established for this specific type of dyes. These correlations were confirmed with density functional theory calculations.

Keywords