Journal of Fungi (Apr 2024)

Host–Pathogen Interactions and Correlated Factors That Are Affected in Replicative-Aged <i>Cryptococcus neoformans</i>

  • Vanessa K. A. Silva,
  • Sungyun Min,
  • Kyungyoon Yoo,
  • Bettina C. Fries

DOI
https://doi.org/10.3390/jof10040279
Journal volume & issue
Vol. 10, no. 4
p. 279

Abstract

Read online

Cryptococcus neoformans is a facultative intracellular fungal pathogen. Ten-generation-old (10GEN) C. neoformans cells are more resistant to phagocytosis and killing by macrophages than younger daughter cells. However, mechanisms that mediate this resistance and intracellular parasitism are poorly understood. Here, we identified important factors for the intracellular survival of 10GEN C. neoformans, such as urease activity, capsule synthesis, and DNA content using flow cytometry and fluorescent microscopy techniques. The real-time visualization of time-lapse imaging was applied to determine the phagosomal acidity, membrane permeability, and vomocytosis (non-lytic exocytosis) rate in J774 macrophages that phagocytosed C. neoformans of different generational ages. Our results showed that old C. neoformans exhibited higher urease activity and enhanced Golgi activity. In addition, old C. neoformans were more likely to be arrested in the G2 phase, resulting in the occasional formation of aberrant trimera-like cells. To finish, the advanced generational age of the yeast cells slightly reduced vomocytosis events within host cells, which might be associated with increased phagolysosome pH and membrane permeability. Altogether, our results suggest that old C. neoformans prevail within acidic phagolysosomes and can manipulate the phagosome pH. These strategies may be used by old C. neoformans to resist phagosomal killing and drive cryptococcosis pathogenesis. The comprehension of these essential host–pathogen interactions could further shed light on mechanisms that bring new insights for novel antifungal therapeutic design.

Keywords