Scientific Reports (Dec 2023)
3-D breast nodule detection on automated breast ultrasound using faster region-based convolutional neural networks and U-Net
Abstract
Abstract Mammography is currently the most commonly used modality for breast cancer screening. However, its sensitivity is relatively low in women with dense breasts. Dense breast tissues show a relatively high rate of interval cancers and are at high risk for developing breast cancer. As a supplemental screening tool, ultrasonography is a widely adopted imaging modality to standard mammography, especially for dense breasts. Lately, automated breast ultrasound imaging has gained attention due to its advantages over hand-held ultrasound imaging. However, automated breast ultrasound imaging requires considerable time and effort for reading because of the lengthy data. Hence, developing a computer-aided nodule detection system for automated breast ultrasound is invaluable and impactful practically. This study proposes a three-dimensional breast nodule detection system based on a simple two-dimensional deep-learning model exploiting automated breast ultrasound. Additionally, we provide several postprocessing steps to reduce false positives. In our experiments using the in-house automated breast ultrasound datasets, a sensitivity of $$93.65\%$$ 93.65 % with 8.6 false positives is achieved on unseen test data at best.