Journal of NeuroEngineering and Rehabilitation (Apr 2021)

Improved cortical activity and reduced gait asymmetry during poststroke self-paced walking rehabilitation

  • Keonyoung Oh,
  • Jihong Park,
  • Seong Hyeon Jo,
  • Seong-Jin Hong,
  • Won-Seok Kim,
  • Nam-Jong Paik,
  • Hyung-Soon Park

DOI
https://doi.org/10.1186/s12984-021-00859-7
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background For patients with gait impairment due to neurological disorders, body weight-supported treadmill training (BWSTT) has been widely used for gait rehabilitation. On a conventional (passive) treadmill that runs at a constant speed, however, the level of patient engagement and cortical activity decreased compared with gait training on the ground. To increase the level of cognitive engagement and brain activity during gait rehabilitation, a self-paced (active) treadmill is introduced to allow patients to actively control walking speed, as with overground walking. Methods To validate the effects of self-paced treadmill walking on cortical activities, this paper presents a clinical test with stroke survivors. We hypothesized that cortical activities on the affected side of the brain would also increase during active walking because patients have to match the target walking speed with the affected lower limbs. Thus, asymmetric gait patterns such as limping or hobbling might also decrease during active walking. Results Although the clinical test was conducted in a short period, the patients showed higher cognitive engagement, improved brain activities assessed by electroencephalography (EEG), and decreased gait asymmetry with the self-paced treadmill. As expected, increases in the spectral power of the low γ and β bands in the prefrontal cortex (PFC), premotor cortex (PMC), and supramarginal gyrus (SG) were found, which are possibly related to processing sensory data and planning voluntary movements. In addition, these changes in cortical activities were also found with the affected lower limbs during the swing phase. Since our treadmill controller tracked the swing speed of the leg to control walking speed, such results imply that subjects made substantial effort to control their affected legs in the swing phase to match the target walking speed. Conclusions The patients also showed reduced gait asymmetry patterns. Based on the results, the self-paced gait training system has the potential to train the symmetric gait and to promote the related cortical activities after stroke. Trial registration Not applicable

Keywords