Frontiers in Computational Neuroscience (Mar 2020)
Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation
- Théo Estienne,
- Théo Estienne,
- Théo Estienne,
- Théo Estienne,
- Marvin Lerousseau,
- Marvin Lerousseau,
- Marvin Lerousseau,
- Marvin Lerousseau,
- Maria Vakalopoulou,
- Maria Vakalopoulou,
- Maria Vakalopoulou,
- Emilie Alvarez Andres,
- Emilie Alvarez Andres,
- Emilie Alvarez Andres,
- Enzo Battistella,
- Enzo Battistella,
- Enzo Battistella,
- Enzo Battistella,
- Alexandre Carré,
- Alexandre Carré,
- Alexandre Carré,
- Siddhartha Chandra,
- Stergios Christodoulidis,
- Mihir Sahasrabudhe,
- Roger Sun,
- Roger Sun,
- Roger Sun,
- Roger Sun,
- Charlotte Robert,
- Charlotte Robert,
- Charlotte Robert,
- Hugues Talbot,
- Nikos Paragios,
- Eric Deutsch,
- Eric Deutsch,
- Eric Deutsch
Affiliations
- Théo Estienne
- Gustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Théo Estienne
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, France
- Théo Estienne
- Gustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, France
- Théo Estienne
- Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, France
- Marvin Lerousseau
- Gustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Marvin Lerousseau
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, France
- Marvin Lerousseau
- Gustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, France
- Marvin Lerousseau
- Université Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, France
- Maria Vakalopoulou
- Gustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Maria Vakalopoulou
- Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, France
- Maria Vakalopoulou
- Université Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, France
- Emilie Alvarez Andres
- Gustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Emilie Alvarez Andres
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, France
- Emilie Alvarez Andres
- Gustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, France
- Enzo Battistella
- Gustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Enzo Battistella
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, France
- Enzo Battistella
- Gustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, France
- Enzo Battistella
- Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, France
- Alexandre Carré
- Gustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Alexandre Carré
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, France
- Alexandre Carré
- Gustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, France
- Siddhartha Chandra
- Université Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, France
- Stergios Christodoulidis
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Predictive Biomarkers and Novel Therapeutic Strategies in Oncology, Villejuif, France
- Mihir Sahasrabudhe
- Université Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, France
- Roger Sun
- Gustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Roger Sun
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, France
- Roger Sun
- Gustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, France
- Roger Sun
- Université Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, France
- Charlotte Robert
- Gustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Charlotte Robert
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, France
- Charlotte Robert
- Gustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, France
- Hugues Talbot
- Université Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, France
- Nikos Paragios
- Gustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Eric Deutsch
- Gustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Eric Deutsch
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, France
- Eric Deutsch
- Gustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, France
- DOI
- https://doi.org/10.3389/fncom.2020.00017
- Journal volume & issue
-
Vol. 14
Abstract
Image registration and segmentation are the two most studied problems in medical image analysis. Deep learning algorithms have recently gained a lot of attention due to their success and state-of-the-art results in variety of problems and communities. In this paper, we propose a novel, efficient, and multi-task algorithm that addresses the problems of image registration and brain tumor segmentation jointly. Our method exploits the dependencies between these tasks through a natural coupling of their interdependencies during inference. In particular, the similarity constraints are relaxed within the tumor regions using an efficient and relatively simple formulation. We evaluated the performance of our formulation both quantitatively and qualitatively for registration and segmentation problems on two publicly available datasets (BraTS 2018 and OASIS 3), reporting competitive results with other recent state-of-the-art methods. Moreover, our proposed framework reports significant amelioration (p < 0.005) for the registration performance inside the tumor locations, providing a generic method that does not need any predefined conditions (e.g., absence of abnormalities) about the volumes to be registered. Our implementation is publicly available online at https://github.com/TheoEst/joint_registration_tumor_segmentation.
Keywords
- brain tumor segmentation
- deformable registration
- multi-task networks
- deep learning
- convolutional neural networks