Zoological Letters (Sep 2017)
Strongest grip on the rod: tarsal morphology and attachment of Japanese pine sawyer beetles
Abstract
Abstract Background Plant-dwelling beetles overcome challenging attachment hurdles by means of ellaborated, tarsal attachment devices, which are frequently equipped with hairy adhesive pads. While the tarsal functional morphology has been intensively studied in leaf and ladybird beetles during the last decades, longhorn beetles (Cerambycidae) have been widely neglected in experimental studies on insect attachment. However, they are known to strongly hold on to plant substrates, using tarsi that are densely covered with adhesive setae. In the present study, we examined the Japanese pine sawyer beetle, Monochamus alternatus, which lives in an arboreal habitat, as an exemplary case. Traction force of male and female beetles on (1) flat and (2) cylindrical, rod-shaped glass was measured. The substrates are further called (1) glass plate and (2) glass rod. Results Both male and female M. alternatus bear ribbon-shaped tarsal adhesive setae with broadened, ultrathin terminals. They release a distinct amount of adhesion-mediating fluid after each step. The beetles never walked on the vertically oriented glass plate. However, they performed well on the horizontal plate, as well as on the horizontally and vertically oriented glass rod. Males generated higher forces and safety factors (traction force devided by the body weight) than females, reaching up to 206 mN traction force and a safety factor of 32 on the horizontal glass rod. Thus, they are able to carry their remarkable body weight (ca. 300 mg) throughout a rather long life span. Conclusions We assume the adaptation of M. alternatus to the attachment on convex and rod-shaped structures to be present in its natural habitat. This longhorn beetle species achieves a proper hold through a combination of interacting parameters: appropriate body alignment and two-sided leg grasping, and generation of normal and friction forces by tarsal pads. This smart attachment system gives rise to the reconsideration of the ecological and evolutionary background, and provides insights for the development of bio-inspired technical grippers.
Keywords