Nanomaterials (Jun 2024)

Structural Characterization and Magnetic Behavior Due to the Cationic Substitution of Lanthanides on Ferrite Nanoparticles

  • Cristóbal Pinto García,
  • Arianne Maine,
  • Rodrigo A. Valenzuela-Fernández,
  • Álvaro Aliaga Cerón,
  • Patricia Barahona Huenchumil,
  • Octavio Peña,
  • Inmaculada Álvarez-Serrano,
  • Andrés Ibáñez,
  • Francisco Melo,
  • Antonio Galdámez Silva

DOI
https://doi.org/10.3390/nano14110971
Journal volume & issue
Vol. 14, no. 11
p. 971

Abstract

Read online

A new series of [Fe3−xLnx]O4 nanoparticles, with Ln = Gd; Dy; Lu and x = 0.05; 0.1; 0.15, was synthesized using the coprecipitation method. Analyses by X-ray diffraction (XRD), Rietveld refinement, and high-resolution transmission electron microscopy (HRTEM) indicate that all phases crystallized in space group Fd3¯m, characteristic of spinels. The XRD patterns, HRTEM, scanning electron microscopy analysis (SEM-EDS), and Raman spectra showed single phases. Transmission electron microscopy (TEM), Rietveld analysis, and Scherrer’s calculations confirm that these materials are nanoparticles with sizes in the range of ~6 nm to ~13 nm. Magnetic measurements reveal that the saturation magnetization (Ms) of the as-prepared ferrites increases with lanthanide chemical substitution (x), while the coercivity (Hc) has low values. The Raman analysis confirms that the compounds are ferrites and the Ms behavior can be explained by the relationship between the areas of the signals. The magnetic measurements indicate superparamagnetic behavior. The blocking temperatures (TB) were estimated from ZFC-FC measurements, and the use of the Néel equation enabled the magnetic anisotropy to be estimated.

Keywords