Scientific Reports (Feb 2024)

Investigation into scalable and efficient enterotoxigenic Escherichia coli bacteriophage production

  • Katie G. Wiebe,
  • Bradley W. M. Cook,
  • Tasia J. Lightly,
  • Deborah A. Court,
  • Steven S. Theriault

DOI
https://doi.org/10.1038/s41598-024-53276-w
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 13

Abstract

Read online

Abstract As the demand for bacteriophage (phage) therapy increases due to antibiotic resistance in microbial pathogens, strategies and methods for increased efficiency, large-scale phage production need to be determined. To date, very little has been published on how to establish scalable production for phages, while achieving and maintaining a high titer in an economical manner. The present work outlines a phage production strategy using an enterotoxigenic Escherichia coli-targeting phage, ‘Phage75’, and accounts for the following variables: infection load, multiplicity of infection, temperature, media composition, harvest time, and host bacteria. To streamline this process, variables impacting phage propagation were screened through a high-throughput assay monitoring optical density at 600 nm (OD600) to indirectly infer phage production from host cell lysis. Following screening, propagation conditions were translated in a scalable fashion in shake flasks at 0.01 L, 0.1 L, and 1 L. A final, proof-of-concept production was then carried out in a CellMaker bioreactor to represent practical application at an industrial level. Phage titers were obtained in the range of 9.5–10.1 log10 PFU/mL with no significant difference between yields from shake flasks and CellMaker. Overall, this suggests that the methodology for scalable processing is reliable for translating into large-scale phage production.