Heliyon (Sep 2024)

Surface-engineered vertically-aligned ZnO nanorod for sensitive non-enzymatic electrochemical monitoring of cholesterol

  • Rafiq Ahmad,
  • Kiesar Sideeq Bhat,
  • Vandana Nagal,
  • Umesh T. Nakate,
  • Akil Ahmad,
  • Mohammed B. Alshammari,
  • Shamshad Alam,
  • Byeong-Il Lee

Journal volume & issue
Vol. 10, no. 18
p. e37847

Abstract

Read online

Developing highly sensitive and selective non-enzymatic electrochemical biosensors for disease biomarker detection has become challenging in healthcare applications. However, advances in material science are opening new avenues for creating more dependable biosensing technologies. In this context, the present work introduces a novel approach by engineering a hybrid structure of zinc oxide nanorod (ZnO NR) modified with iron oxide nanoparticle (Fe2O3 NP) on an FTO electrode. This Fe2O3 NP-ZnO NR hybrid material functions as a nanozyme, facilitating the catalysis of cholesterol and enabling the direct transfer of electrons to the fluorine-doped tin oxide (FTO) electrode, limiting the need for costly and traditional enzymes in the detection process. This innovative non-enzymatic cholesterol biosensor showcases remarkable sensitivity, registering at 642.8 μA/mMcm2 within a linear response range of up to 9.0 mM. It also exhibits a low detection limit (LOD) of ∼12.4 μM, ensuring its capability to detect minimal concentrations of cholesterol accurately. Moreover, the developed biosensor displays exceptional selectivity by effectively distinguishing cholesterol molecules from other interfering biological species, while exhibiting outstanding stability and reproducibility. Our findings indicate that the Fe2O3 NP-ZnO NR hybrid nanostructure on the FTO electrode holds promise for enhancing biosensor stability. Furthermore, the present device fabrication platform offers versatility, as it can be adapted with various enzymes or modified with different metal oxides, potentially broadening its applicability in a wide range of biomarkers detection.

Keywords