Mathematical Biosciences and Engineering (Apr 2021)

Electrostatic features for nucleocapsid proteins of SARS-CoV and SARS-CoV-2

  • Wenhan Guo,
  • Yixin Xie,
  • Alan E Lopez-Hernandez,
  • Shengjie Sun ,
  • Lin Li

DOI
https://doi.org/10.3934/mbe.2021120
Journal volume & issue
Vol. 18, no. 3
pp. 2372 – 2383

Abstract

Read online

COVID-19 is increasingly affecting human health and global economy. Understanding the fundamental mechanisms of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is highly demanded to develop treatments for COVID-19. SARS-CoV and SARS-CoV-2 share 92.06% identity in their N protein RBDs' sequences, which results in very similar structures. However, the SARS-CoV-2 is more easily to spread. Utilizing multi-scale computational approaches, this work studied the fundamental mechanisms of the nucleocapsid (N) proteins of SARS-CoV and SARS-CoV-2, including their stabilities and binding strengths with RNAs at different pH values. Electrostatic potential on the surfaces of N proteins show that both the N proteins of SARS-CoV and SARS-CoV-2 have dominantly positive potential to attract RNAs. The binding forces between SARS-CoV N protein and RNAs at different distances are similar to that of SARS-CoV-2, both in directions and magnitudes. The electric filed lines between N proteins and RNAs are also similar for both SARS-CoV and SARS-CoV-2. The folding energy and binding energy dependence on pH revealed that the best environment for N proteins to perform their functions with RNAs is the weak acidic environment.

Keywords