Cancer Cell International (Oct 2021)

MYCN and MAX alterations in Wilms tumor and identification of novel N-MYC interaction partners as biomarker candidates

  • Ovidio Jiménez Martín,
  • Andreas Schlosser,
  • Rhoikos Furtwängler,
  • Jenny Wegert,
  • Manfred Gessler

DOI
https://doi.org/10.1186/s12935-021-02259-2
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Wilms tumor (WT) is the most common renal tumor in childhood. Among others, MYCN copy number gain and MYCN P44L and MAX R60Q mutations have been identified in WT. MYCN encodes a transcription factor that requires dimerization with MAX to activate transcription of numerous target genes. MYCN gain has been associated with adverse prognosis in different childhood tumors including WT. The MYCN P44L and MAX R60Q mutations, located in either the transactivating or basic helix-loop-helix domain, respectively, are predicted to be damaging by different pathogenicity prediction tools, but the functional consequences remain to be characterized. Methods We screened a large cohort of unselected WTs for MYCN and MAX alterations. Wild-type and mutant protein function were characterized biochemically, and we analyzed the N-MYC protein interactome by mass spectrometric analysis of N-MYC containing protein complexes. Results Mutation screening revealed mutation frequencies of 3% for MYCN P44L and 0.9% for MAX R60Q that are associated with a higher risk of relapse. Biochemical characterization identified a reduced transcriptional activation potential for MAX R60Q, while the MYCN P44L mutation did not change activation potential or protein stability. The protein interactome of N-MYC-P44L was likewise not altered as shown by mass spectrometric analyses of purified N-MYC complexes. Nevertheless, we could identify a number of novel N-MYC partner proteins, e.g. PEG10, YEATS2, FOXK1, CBLL1 and MCRS1, whose expression is correlated with MYCN in WT samples and several of these are known for their own oncogenic potential. Conclusions The strongly elevated risk of relapse associated with mutant MYCN and MAX or elevated MYCN expression corroborates their role in WT oncogenesis. Together with the newly identified co-expressed interactors they expand the range of potential biomarkers for WT stratification and targeting, especially for high-risk WT.

Keywords