3D Printing in Medicine (Feb 2024)

Dimensional accuracy and precision and surgeon perception of additively manufactured bone models: effect of manufacturing technology and part orientation

  • Emir Benca,
  • Barbara Eckhart,
  • Alexander Stoegner,
  • Ewald Unger,
  • Martin Bittner-Frank,
  • Andreas Strassl,
  • Claudia Gahleitner,
  • Lena Hirtler,
  • Reinhard Windhager,
  • Gerhard M. Hobusch,
  • Francesco Moscato

DOI
https://doi.org/10.1186/s41205-024-00203-4
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Additively manufactured (AM) anatomical bone models are primarily utilized for training and preoperative planning purposes. As such, they must meet stringent requirements, with dimensional accuracy being of utmost importance. This study aimed to evaluate the precision and accuracy of anatomical bone models manufactured using three different AM technologies: digital light processing (DLP), fused deposition modeling (FDM), and PolyJetting (PJ), built in three different part orientations. Additionally, the study sought to assess surgeons’ perceptions of how well these models mimic real bones in simulated osteosynthesis. Methods Computer-aided design (CAD) models of six human radii were generated from computed tomography (CT) imaging data. Anatomical models were then manufactured using the three aforementioned technologies and in three different part orientations. The surfaces of all models were 3D-scanned and compared with the original CAD models. Furthermore, an anatomical model of a proximal femur including a metastatic lesion was manufactured using the three technologies, followed by (mock) osteosynthesis performed by six surgeons on each type of model. The surgeons’ perceptions of the quality and haptic properties of each model were assessed using a questionnaire. Results The mean dimensional deviations from the original CAD model ranged between 0.00 and 0.13 mm with maximal inaccuracies < 1 mm for all models. In surgical simulation, PJ models achieved the highest total score on a 5-point Likert scale ranging from 1 to 5 (with 1 and 5 representing the lowest and highest level of agreement, respectively), (3.74 ± 0.99) in the surgeons’ perception assessment, followed by DLP (3.41 ± 0.99) and FDM (2.43 ± 1.02). Notably, FDM was perceived as unsuitable for surgical simulation, as the material melted during drilling and sawing. Conclusions In conclusion, the choice of technology and part orientation significantly influenced the accuracy and precision of additively manufactured bone models. However, all anatomical models showed satisfying accuracies and precisions, independent of the AM technology or part orientation. The anatomical and functional performance of FDM models was rated by surgeons as poor.

Keywords