iForest - Biogeosciences and Forestry (Oct 2015)
Potential impacts of regional climate change on site productivity of Larix olgensis plantations in northeast China
Abstract
Climate change is expected to substantially affect forest site productivity. However, its effects may vary depending on the climate scenario, region and tree species. We chose Larix olgensis in northeast China to investigate the responses of forest site productivity to regional climate change using a generalized additive model (GAM). Based on site index data and climate variables from 335 townships across the Jilin Province, we developed a climate-sensitive forest site index model, which accounted for 72.9% of the variation in the site index at the referred age of 20 (SI20). Our results indicated that climatic and geographic factors significantly affect forest site productivity. The geographic location, mean annual temperature, mean annual precipitation and mean temperature differential were found to be statistically significant explanatory variables. We predict that the change of mean SI20 would vary from 0.3 m to -0.8 m (2.2% to -5.9%) by 2050 and from 0.5 m to -1.6 m (3.7% to -11.8%) by 2070 under three BC-RCP scenarios with rising temperature and increasing precipitation. Our study suggests that climate is an important factor affecting forest site productivity. Future climate changes could affect the forest site productivity both positively and negatively for Larix olgensis in northeast China. The relationship between climate and forest site productivity has strong implications for adaptive forest management and needs to be considered in forest management planning under future climate change.
Keywords