Minerals (Feb 2020)

The Elastic Properties of β-Mg<sub>2</sub>SiO<sub>4</sub> Containing 0.73 wt.% of H<sub>2</sub>O to 10 GPa and 600 K by Ultrasonic Interferometry with Synchrotron X-Radiation

  • Gabriel D. Gwanmesia,
  • Matthew L. Whitaker,
  • Lidong Dai,
  • Alwin James,
  • Haiyan Chen,
  • Richard S. Triplett,
  • Nao Cai

DOI
https://doi.org/10.3390/min10030209
Journal volume & issue
Vol. 10, no. 3
p. 209

Abstract

Read online

We measured the elastic velocities of a synthetic polycrystalline β-Mg2SiO4 containing 0.73 wt.% H2O to 10 GPa and 600 K using ultrasonic interferometry combined with synchrotron X-radiation. Third-order Eulerian finite strain analysis of the high P and T data set yielded Kso = 161.5(2) GPa, Go = 101.6(1) GPa, and (∂Ks/∂P)T = 4.84(4), (∂G/∂P)T = 1.68(2) indistinguishable from Kso = 161.1(3) GPa, Go = 101.4(1) GPa, and (∂Ks/∂P)T = 4.93(4), (∂G/∂P)T = 1.73(2) from the linear fit. The hydration of the wadsleyite by 0.73 wt.% decreases Ks and G moduli by 5.3% and 8.6%, respectively, but no measurable effect was noted for (∂Ks/∂P)T and (∂G/∂P)T. The temperature derivatives of the Ks and G moduli from the finite strain analysis (∂KS/∂T)P = −0.013(2) GPaK−1, (∂G/∂T)P = −0.015(0.4) GPaK−1, and the linear fit (∂KS/∂T)P = −0.015(1) GPaK−1, (∂G/∂T)P = −0.016(1) GPaK−1 are in agreement, and both data sets indicating the |(∂G/∂T)P| to be greater than |(∂KS/∂T)P|. Calculations yield ∆Vp(α-β) = 9.88% and ∆VS(α-β) = 8.70% for the hydrous β-Mg2SiO4 and hydrous α-Mg2SiO4, implying 46–52% olivine volume content in the Earth's mantle to satisfy the seismic velocity contrast ∆Vs = ∆VP = 4.6% at the 410 km depth.

Keywords