BMC Plant Biology (Jan 2020)

Transcriptomic analysis reveals recovery strategies in strawberry roots after using a soil amendment in continuous cropping soil

  • Peng Chen,
  • Yu-zhu Wang,
  • Qi-zhi Liu,
  • Wei-hua Li,
  • He-qin Li,
  • Xing-yue Li,
  • Yun-tao Zhang

DOI
https://doi.org/10.1186/s12870-019-2216-x
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background In strawberry cultivation, continuous cropping (CC) obstacles seriously threaten production. A patented soil amendment (SA) can effectively relieve the CC obstacles to strawberry cultivation, but knowledge of the recovery mechanisms underlying this phenomenon is limited. Results In this study, transcriptomic profiling of strawberry roots in soil with and without the SA was conducted using RNA-Seq technology to reveal gene expression changes in response to SA treatment. In total, 188 differentially expressed genes (DEGs), including 144 upregulated and 44 downregulated DEGs, were identified. SA treatment resulted in genotype-dependent responses, and the response pattern, including an overall increase in the expression of nutrient transport genes and a decrease in the expression of defense response genes, may be a possible mechanism underlying recovery strategies in strawberry roots after the application of the SA to CC soil. We also found that 9 Hsp genes involved in plant defense pathways were all downregulated in the SA-treated roots. Conclusions This research indicated that strawberry plants reallocated defense resources to development when SA treatment alleviated the stress caused by a CC soil environment. The present study provides an opportunity to reveal the fundamental mechanisms of the tradeoff between growth and defense in strawberry.

Keywords