Journal of Materials Research and Technology (Nov 2024)
A review on recent progress of refractory high entropy alloys: From fundamental research to engineering applications
Abstract
Refractory high-entropy alloys (RHEAs) have emerged as frontier materials for high-temperature structural applications due to their exceptional mechanical properties and thermal stability. This review aims to provide a comprehensive and in-depth summary of the latest research progress in the field of RHEAs. By systematically analyzing 253 publications since 2022, this review presents a panoramic overview of the current research status in the field of RHEAs, covering aspects from alloy design, microstructure, processing techniques, mechanical behavior, to physicochemical properties. Key strengthening and toughening mechanisms, such as solid solution strengthening, precipitation strengthening, and grain boundary strengthening, are extensively analyzed. The high-temperature mechanical performance, oxidation resistance, and adaptability of RHEAs in extreme environments including corrosion and irradiation, are critically reviewed, and the potential application value of these research findings in aerospace, nuclear energy, biomedical, and other fields is discussed. Simultaneously, the multidisciplinary characteristics of RHEAs research has revealed the trend of the field evolving from fundamental research to practical applications. Furthermore, with the aid of advanced characterization techniques and computational methods, the review elucidates the controlling effects of chemical short-range order, defect structures, and other factors on the performance evolution of RHEAs, highlighting the importance of multi-principal element synergistic effects. Based on summarizing the key scientific issues and technological bottlenecks faced by RHEAs, the article provides a forward-looking perspective on future research directions, emphasizing development strategies that integrate computation and experiments, and accelerate the transformation of fundamental research into engineering applications, thus providing insights and guidance for developing a new generation of high-performance RHEAs.