Biotechnologie, Agronomie, Société et Environnement (Jan 2008)

Changes in soil biological quality under legume- and maize-based farming systems in a humid savanna zone of Côte d’Ivoire

  • Tano Y.,
  • Brunet D.,
  • Loranger-Merciris G.,
  • Tondoh EJ.,
  • Bernhard-Reversat F.,
  • Koné WA.

Journal volume & issue
Vol. 12, no. 2
pp. 147 – 155

Abstract

Read online

Studying the impact of farming systems on soil status is essential in determining the most relevant for a given agroecological zone. A trial was conducted in a West Africa humid savanna, aiming at assessing the short-term effects of farming systems on soil (0-10 cm) organic carbon (SOC) content and some soil microbiological properties. A randomized complete block experimental design with three replications, and the following treatments were used: Mucuna pruriens (Mucuna), Pueraria phaseoloides (Pueraria), Lablab purpureus (Lablab), a combination of these three legumes (Mixed-legumes), maize + urea (Maize-U), maize + triple super phosphate (Maize-Sp), maize + urea + triple super phosphate (Maize-USp), fertilizer-free maize continuous cropping (Maize-Tradi). Results indicated that SOC content was improved over time under legume-based systems. The relative increase was the highest with the legume association and Lablab, where SOC varied from 7.5 to 8.6 g.kg-1 (i.e. 14.7%) and from 7.2 to 8.3 g.kg-1 (i.e. 15.3%) respectively, between the start and the end of the trial. Besides, applying grass and maize residues as mulch on the ground, in association with inorganic fertilizers may be a way of improving SOC content in the short-term. Although legume-based systems exhibited highest values, microbial biomass carbon (MBC) did not show any statistical significant differences between treatments. However, soil C mineralization and soil specific respiration were influenced by the farming systems, with higher mean values under legume-based systems (42 ± 7.6 mg C-CO2.g-1 Corg and 0.4 mg C-CO2.g-1 biomass C, respectively), compared to maize continuous cropping systems (33.1 ± 1.6 mg C-CO2.g-1 Corg and 0.3 mg C-CO2.g-1 biomass C, respectively). Thus, these parameters can be used as sensitive indicators of the early changes in soil organic matter quality. The integration of legumes cover crops in farming systems may contribute to improve soil quality that would lead to sustainable agriculture in Côte d'Ivoire humid savannas.

Keywords