Frontiers in Chemistry (Dec 2019)

A Theranostic Nanoprobe for Hypoxia Imaging and Photodynamic Tumor Therapy

  • Jing Hao Fan,
  • Gui Ling Fan,
  • Ping Yuan,
  • Fu An Deng,
  • Ling Shan Liu,
  • Xiang Zhou,
  • Xi Yong Yu,
  • Hong Cheng,
  • Shi Ying Li

DOI
https://doi.org/10.3389/fchem.2019.00868
Journal volume & issue
Vol. 7

Abstract

Read online

Hypoxia is a common feature for most malignant tumors, which was also closely related to the oxygen-dependent photodynamic therapy. Based on Förster resonance energy transfer (FRET), a smart nanoprobe (designated as H-Probe) was designed in this paper for hypoxia imaging and photodynamic tumor therapy. Due to the FRET process, H-Probe could respond to hypoxia with a significant fluorescence recovery. Moreover, abundant in vitro investigations demonstrated that the photosensitizer of PpIX in H-Probe could generate large amounts of singlet oxygen to kill cancer cells in the presence of oxygen and light with appropriate wavelength. Also, intravenously injected H-Probe with light irradiation achieved an effective tumor inhibition in vivo with a reduced side effect. This original strategy of integrating hypoxia imaging and tumor therapy in one nanoplatform would promote the development of theranostic nanoplatform for tumor precision therapy.

Keywords