Geosciences (Feb 2019)

The Rise of A Habitable Planet: Four Required Conditions for the Origin of Life in the Universe

  • Vladimir Kompanichenko

DOI
https://doi.org/10.3390/geosciences9020092
Journal volume & issue
Vol. 9, no. 2
p. 92

Abstract

Read online

The advanced version of the author’s inversion concept of the origin of terrestrial life and its application for life in the Universe has been substantiated. A key step in the transition to life consists in the thermodynamic inversion of non-living prebiotic microsystems when the contributions of free energy (F) and information (I) become prevalent over the contribution of entropy (S). It is based the thermodynamic corridor that is mandatory for all chemical scenarios for the origin of life: F + I < S (prebiotic microsystem) → F + I ≈ S (intermediate stage, inversion moment) → F + I > S (primary living unit). A prebiotic organic microsystem can reach the intermediate state between non-life and life only under high-frequency and multilevel oscillations of physic-chemical parameters in hydrothermal environments. The oscillations are considered the fourth required condition for the origin of life, in addition to the three well-known ones: the availability of organic matter, an aqueous medium, and a source of energy. The emergence of initial life sparks in nonequilibrium prebiotic microsystems (being at the intermediate state) proceeds through the continuous response (counteraction) of prebiotic microsystems to incessant physic-chemical oscillations (stress). The next step of laboratory simulations on the origin of life directed to the exploration of the microsystems’ response to high-frequency oscillations (>10−10 s⁻<30 min) is proposed. Finally, some fragments of the general scenario of the origin of life in the Universe based on the whole four required conditions have been outlined.

Keywords