Sensors (Sep 2024)

Research on a 3D Point Cloud Map Learning Algorithm Based on Point Normal Constraints

  • Zhao Fang,
  • Youyu Liu,
  • Lijin Xu,
  • Mahamudul Hasan Shahed,
  • Liping Shi

DOI
https://doi.org/10.3390/s24196185
Journal volume & issue
Vol. 24, no. 19
p. 6185

Abstract

Read online

Laser point clouds are commonly affected by Gaussian and Laplace noise, resulting in decreased accuracy in subsequent surface reconstruction and visualization processes. However, existing point cloud denoising algorithms often overlook the local consistency and density of the point cloud normal vector. A feature map learning algorithm which integrates point normal constraints, Dirichlet energy, and coupled orthogonality bias terms is proposed. Specifically, the Dirichlet energy is employed to penalize the difference between neighboring normal vectors and combined with a coupled orthogonality bias term to enhance the orthogonality between the normal vectors and the subsurface, thereby enhancing the accuracy and robustness of the learned denoising of the feature maps. Additionally, to mitigate the effect of mixing noise, a point cloud density function is introduced to rapidly capture local feature correlations. In experimental findings on the anchor public dataset, the proposed method reduces the average mean square error (MSE) by 0.005 and 0.054 compared to the MRPCA and NLD algorithms, respectively. Moreover, it improves the average signal-to-noise ratio (SNR) by 0.13 DB and 2.14 DB compared to MRPCA and AWLOP, respectively. The proposed algorithm enhances computational efficiency by 27% compared to the RSLDM method. It not only removes mixed noise but also preserves the local geometric features of the point cloud, further improving computational efficiency.

Keywords