International Journal of Nanomedicine (Nov 2017)

Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application

  • Mondal S,
  • Manivasagan P,
  • Bharathiraja S,
  • Santha Moorthy M,
  • Kim HH,
  • Seo H,
  • Lee KD,
  • Oh J

Journal volume & issue
Vol. Volume 12
pp. 8389 – 8410

Abstract

Read online

Sudip Mondal,1 Panchanathan Manivasagan,1 Subramaniyan Bharathiraja,1 Madhappan Santha Moorthy,1 Hye Hyun Kim,1 Hansu Seo,2 Kang Dae Lee,3 Junghwan Oh1,2 1Marine-Integrated Bionics Research Center, 2Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, 3Department of Otolaryngology – Head and Neck Surgery, Kosin University College of Medicine, Busan, Republic of Korea Abstract: In this review, specific attention is paid to the development of nanostructured magnetic hydroxyapatite (MHAp) and its potential application in controlled drug/gene delivery, tissue engineering, magnetic hyperthermia treatment, and the development of contrast agents for magnetic resonance imaging. Both magnetite and hydroxyapatite materials have excellent prospects in nanomedicine with multifunctional therapeutic approaches. To date, many research articles have focused on biomedical applications of nanomaterials because of which it is very difficult to focus on any particular type of nanomaterial. This study is possibly the first effort to emphasize on the comprehensive assessment of MHAp nanostructures for biomedical applications supported with very recent experimental studies. From basic concepts to the real-life applications, the relevant characteristics of magnetic biomaterials are patented which are briefly discussed. The potential therapeutic and diagnostic ability of MHAp-nanostructured materials make them an ideal platform for future nanomedicine. We hope that this advanced review will provide a better understanding of MHAp and its important features to utilize it as a promising material for multifunctional biomedical applications. Keywords: hydroxyapatite, iron oxide, hyperthermia, drug delivery, tissue engineering

Keywords