PLoS ONE (Jan 2017)

Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing.

  • Yi Yang,
  • Na Wang,
  • Xinyan Guo,
  • Yi Zhang,
  • Boping Ye

DOI
https://doi.org/10.1371/journal.pone.0178425
Journal volume & issue
Vol. 12, no. 5
p. e0178425

Abstract

Read online

In this study, we designed a microcosm experiment to explore the composition of the bacterial community in the rhizosphere of maize and bulk soil by sequencing the V3-V4 region of the 16S rRNA gene on the Illumina system. 978-1239 OTUs (cut off level of 3%) were found in rhizosphere and bulk soil samples. Rhizosphere shared features with the bulk soil, such as predominance of Acidobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatimonadetes and TM7. At genus level, many of the dominant rhizosphere genera (Chitinophaga, Nitrospira, Flavobacterium, etc.) displayed different patterns of temporal changes in the rhizosphere as opposed to the bulk soil, showing rhizosphere has more impact on soil microorganisms. Besides, we found that significant growth-related dynamic changes in bacterial community structure were mainly associated with phylum Bacteroidetes, Proteobacteria and Actinobacteria (mainly genera Burkholderia, Flavisolibacter and Pseudomonas), indicating that different growth stages affected the bacterial community composition in maize soil. Furthermore, some unique genera in especial Plant-Growth Promoting Rhizobacteria (PGPR) such as Nonomuraea, Thiobacillus and Bradyrhizobium etc., which were beneficial for the plant growth appeared to be more abundant in the rhizosphere than bulk soil, indicating that the selectivity of root to rhizosphere microbial is an important mechanism leading to the differences in the bacteria community structure between rhizosphere and bulk soil.