Abstract and Applied Analysis (Jan 2010)

Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals

  • Aneta Sikorska-Nowak

DOI
https://doi.org/10.1155/2010/836347
Journal volume & issue
Vol. 2010

Abstract

Read online

We prove existence theorems for integro-differential equations π‘₯Ξ”βˆ«(𝑑)=𝑓(𝑑,π‘₯(𝑑),𝑑0π‘˜(𝑑,𝑠,π‘₯(𝑠))Δ𝑠), π‘₯(0)=π‘₯0, π‘‘βˆˆπΌπ‘Ž=[0,π‘Ž]βˆ©π‘‡, π‘Žβˆˆπ‘…+, where 𝑇 denotes a time scale (nonempty closed subset of real numbers 𝑅), and πΌπ‘Ž is a time scale interval. The functions 𝑓,π‘˜ are weakly-weakly sequentially continuous with values in a Banach space 𝐸, and the integral is taken in the sense of Henstock-Kurzweil-Pettis delta integral. This integral generalizes the Henstock-Kurzweil delta integral and the Pettis integral. Additionally, the functions 𝑓 and π‘˜ satisfy some boundary conditions and conditions expressed in terms of measures of weak noncompactness. Moreover, we prove Ambrosetti's lemma.