Assessment of the Antioxidant and Antimicrobial Potential of <i>Ptychotis verticillata</i> Duby Essential Oil from Eastern Morocco: An In Vitro and In Silico Analysis
Mohamed Taibi,
Amine Elbouzidi,
Douaae Ou-Yahia,
Mohammed Dalli,
Reda Bellaouchi,
Aziz Tikent,
Mohammed Roubi,
Nadia Gseyra,
Abdeslam Asehraou,
Christophe Hano,
Mohamed Addi,
Bouchra El Guerrouj,
Khalid Chaabane
Affiliations
Mohamed Taibi
Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
Amine Elbouzidi
Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
Douaae Ou-Yahia
Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
Mohammed Dalli
Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
Reda Bellaouchi
Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
Aziz Tikent
Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
Mohammed Roubi
Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
Nadia Gseyra
Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
Abdeslam Asehraou
Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
Christophe Hano
Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France
Mohamed Addi
Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
Bouchra El Guerrouj
Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
Khalid Chaabane
Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
Ptychotis verticillata Duby, referred to as Nûnkha in the local language, is a medicinal plant that is native to Morocco. This particular plant is a member of the Apiaceae family and has a longstanding history in traditional medicine and has been utilized for therapeutic purposes by practitioners for generations. The goal of this research is to uncover the phytochemical makeup of the essential oil extracted from P. verticillata, which is indigenous to the Touissite region in Eastern Morocco. The extraction of the essential oil of P. verticillata (PVEO) was accomplished through the use of hydro-distillation via a Clevenger apparatus. The chemical profile of the essential oil was then determined through analysis utilizing gas chromatography–mass spectrometry (GC/MS). The study findings indicated that the essential oil of P. verticillata is composed primarily of Carvacrol (37.05%), D-Limonene (22.97%), γ-Terpinene (15.97%), m-Cymene (12.14%) and Thymol (8.49%). The in vitro antioxidant potential of PVEO was evaluated using two methods: the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical trapping assay and the ferric reducing antioxidant power (FRAP) method. The data demonstrated considerable radical scavenging and relative antioxidative power. Escherichia coli, Staphylococcus aureus, Listeria innocua, and Pseudomonas aeruginosa were the most susceptible bacterial strains tested, while Geotrichum candidum, Candida albicans, and Rhodotorula glutinis were the most resilient fungi strains. PVEO had broad-spectrum antifungal and antibacterial properties. To elucidate the antioxidative and antibacterial characteristics of the identified molecules, we applied the methodology of molecular docking, a computational approach that forecasts the binding of a small molecule to a protein. Additionally, we utilized the Prediction of Activity Spectra for Substances (PASS) algorithm; Absorption, Distribution, Metabolism, and Excretion (ADME); and Pro-Tox II (to predict the toxicity in silico) tests to demonstrate PVEO’s identified compounds’ drug-likeness, pharmacokinetic properties, the anticipated safety features after ingestion, and the potential pharmacological activity. Finally, our findings scientifically confirm the ethnomedicinal usage and usefulness of this plant, which may be a promising source for future pharmaceutical development.