Geosciences (May 2018)

Mapping the Loss of Mt. Kenya’s Glaciers: An Example of the Challenges of Satellite Monitoring of Very Small Glaciers

  • Rainer Prinz,
  • Armin Heller,
  • Martin Ladner,
  • Lindsey I. Nicholson,
  • Georg Kaser

DOI
https://doi.org/10.3390/geosciences8050174
Journal volume & issue
Vol. 8, no. 5
p. 174

Abstract

Read online

Since the last complete glacier mapping of Mt. Kenya in 2004, strong glacier retreat and glacier disintegration have been reported. Here, we compile and present a new glacier inventory of Mt. Kenya to document recent glacier change. Glacier area and mass changes were derived from an orthophoto and digital elevation model extracted from Pléiades tri-stereo satellite images. We additionally explore the feasibility of using freely available imagery (Sentinel-2) and an alternative elevation model (TanDEM-X-DEM) for monitoring very small glaciers in complex terrain, but both proved to be inappropriate; Sentinel-2 because of its too coarse horizontal resolution compared to the very small glaciers, and TanDEM-X-DEM because of errors in the steep summit area of Mt. Kenya. During 2004–2016, the total glacier area on Mt. Kenya decreased by 121.0 × 10³ m² (44%). The largest glacier (Lewis) lost 62.8 × 10³ m² (46%) of its area and 1.35 × 10³ m³ (57%) of its volume during the same period. The mass loss of Lewis Glacier has been accelerating since 2010 due to glacier disintegration, which has led to the emergence of a rock outcrop splitting the glacier in two parts. If the current retreat rates prevail, Mt. Kenya’s glaciers will be extinct before 2030, implying the cessation of the longest glacier monitoring record of the tropics.

Keywords