Радіоелектронні і комп'ютерні системи (Dec 2019)
COMPARISON OF ALGORITHMS FOR CONTROLLED PIXEL-BY-PIXEL CLASSIFICATION OF NOISY MULTICHANNEL IMAGES
Abstract
The subject of this study is the pixel-by-pixel controlled classification of multichannel satellite images distorted by additive white Gaussian noise. The paper aim is to study the effectiveness of various methods of image classification in a wide range of signal-to-noise ratios; an F-measure is used as a criterion for recognition efficiency. It is a harmonic mean of accuracy and completeness: accuracy shows how much of the objects identified by the classifier as positive are positive; completeness shows how much of the positive objects were allocated by the classifier. Tasks: generate random valuesof the brightness of the noise components, ensuring their compliance with the accepted probabilistic model; implement the procedures of element-wise controlled classification according to the methods of support vectors, logistic regression, neural network based on a multilayer perceptron for images distorted by noise; evaluate and analyze the results of objects bezel-wise classification of noisy images; investigate the effect of noise variance on classification performance. The following results are obtained. Algorithms of pixel-by-pixel controlled classification are implemented. A comparative analysis of classification efficiency in noisy images is performed. Conclusions are drawn. It is shown that all classifiers provide the best results for classes that mainly correspond to areal objects (Water, Grass) while heterogeneous objects (Urban and, especially, Bushes) are recognized in the worst way; classifiers based on the support vector machine and logistic regression show low recognition accuracy of extended objects, such as a narrow river (that belongs to the wide class of "water"). The presence of noise in the image leads to a significant increase in the number of recognition errors, which mainly appear as isolated points on the selected segments, that is, incorrectly classified pixels. In this case, the best value of the classification quality indicator is achieved using neural networks based on a multilayer perceptron.
Keywords