Symmetry, Integrability and Geometry: Methods and Applications (Aug 2012)
Discrete Integrable Equations over Finite Fields
Abstract
Discrete integrable equations over finite fields are investigated. The indeterminacy of the equation is resolved by treating it over a field of rational functions instead of the finite field itself. The main discussion concerns a generalized discrete KdV equation related to a Yang-Baxter map. Explicit forms of soliton solutions and their periods over finite fields are obtained. Relation to the singularity confinement method is also discussed.