International Journal of Molecular Sciences (Oct 2022)

Engineered Human Intervertebral Disc Model Inducing Degenerative Microglial Proinflammation

  • Min-Ho Hwang,
  • You Jung Kang,
  • Hyeong-Guk Son,
  • Hansang Cho,
  • Hyuk Choi

DOI
https://doi.org/10.3390/ijms232012216
Journal volume & issue
Vol. 23, no. 20
p. 12216

Abstract

Read online

Degeneration of the intervertebral disc (IVD) is a major contributor to low back pain (LBP). IVD degeneration is characterized by abnormal production of inflammatory cytokines secreted by IVD cells. Although the underlying molecular mechanisms of LBP have not been elucidated, increasing evidence suggests that LBP is associated particularly with microglia in IVD tissues and the peridiscal space, aggravating the cascade of degenerative events. In this study, we implemented our microfluidic chemotaxis platform to investigate microglial inflammation in response to our reconstituted degenerative IVD models. The IVD models were constructed by stimulating human nucleus pulposus (NP) cells with interleukin-1β and producing interleukin-6 (129.93 folds), interleukin-8 (18.31 folds), C-C motif chemokine ligand-2 (CCL-2) (6.12 folds), and CCL-5 (5.68 folds). We measured microglial chemotaxis (p p p < 0.001) by soluble factors from IVD models. This, in turn, enhances the inflammatory milieu in IVD tissues, causing matrix degradation and cellular damage. Our findings indicate that degenerative IVD may induce degenerative microglial proinflammation, leading to LBP development.

Keywords