JOIV: International Journal on Informatics Visualization (Jun 2022)
An Intrusion Detection System Using SDAE to Enhance Dimensional Reduction in Machine Learning
Abstract
In the last decade, the number of attacks on the internet has grown significantly, and the types of attacks vary widely. This causes huge financial losses in various institutions such as the private and government sectors. One of the efforts to deal with this problem is by early detection of attacks, often called IDS (instruction detection system). The intrusion detection system was deactivated. An Intrusion Detection System (IDS) is a hardware or software mechanism that monitors the Internet for malicious attacks. It can scan the internetwork for potentially dangerous behavior or security threats. IDS is responsible for maintaining network activity under the Network-Based Intrusion Detection System (NIDS) or Host-Based Intrusion Detection System (HIDS). IDS works by comparing known normal network activity signatures with attack activity signatures. In this research, a dimensional reduction and feature selection mechanism called Stack Denoising Auto Encoder (SDAE) succeeded in increasing the effectiveness of Naive Bayes, KNN, Decision Tree, and SVM. The researchers evaluated the performance using evaluation metrics with a confusion matrix, accuracy, recall, and F1-score. Compared with the results of previous works in the IDS field, our model increased the effectiveness to more than 2% in NSL-KDD Dataset, including in binary class and multi-class evaluation methods. Moreover, using SDAE also improved traditional machine learning with modern deep learning such as Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN). In the future, it is possible to integrate SDAE with a deep learning model to enhance the effectiveness of IDS detection
Keywords