Turkish Journal of Forestry (Jun 2023)

Exploring the potential of nanotechnology for sustainable wood preservation

  • Doğu Ramazanoğlu,
  • Ferhat Özdemir

DOI
https://doi.org/10.18182/tjf.1251521
Journal volume & issue
Vol. 24, no. 2
pp. 122 – 133

Abstract

Read online

Wood preservation plays a vital role in maintaining wood products' structural and aesthetic properties. Traditional methods, including chemical treatments, preservatives, and coatings, have been utilized for wood protection, but sustainable alternatives are sought due to their negative environmental and health impacts. The utilization of nanomaterials presents a promising avenue for wood protection. In this study, nanoparticles were applied to lignocellulosic materials using the impregnation method to enhance solid wood’s water and fire resistance without needing additional energy. This research aimed to identify a cost-effective and energy-efficient approach for large-scale wood production while introducing innovative and competitive materials in the wood industry. Surface modification and characterization analyses, including SEM-EDX and Optical Profilometer studies, TGA-DTA analysis for thermal strength assessment, % water uptake test for water resistance evaluation, and PCE-CSM 10 spectrophotometer measurements to determine color change parameters, were conducted. Functionalized wood surfaces treated with zinc oxide (ZnO), chitosan (Ch), and tin dioxide (SnO2) nanoparticles exhibited water uptake values of 64%, 71%, and 73%, respectively. Following the salinization process using TEOS, the water uptake values decreased to 58%, 59%, and 60% for the respective surfaces. Based on the TGA and DTA results, the W-ZnO-TEOS sample demonstrated superior mass protection, with a significant weight loss of 62.1% (5.717 mg) at 340-375°C and 14.4% (1.328 mg) at 381-439°C. This was followed by the W-SnO2-TEOS sample, which exhibited a weight loss of 46.3% (7.050 mg) at 301-353°C and 15.4% (2.345 mg) at 431-469°C. The W-Ch-TEOS sample displayed a weight loss of 66.4% (8.242 mg) at 342-365°C and 18.8% (2.335 mg) at 448-476°C. Overall, the W-SnO2-TEOS sample demonstrated the highest water resistance, while the W-ZnO-TEOS sample exhibited the most effective fire protection capabilities.

Keywords