Mathematics (Nov 2024)

Second-Order Regularity for Degenerate Parabolic Quasi-Linear Equations in the Heisenberg Group

  • Chengwei Yu,
  • Huiying Wang,
  • Kunpeng Cui,
  • Zijing Zhao

DOI
https://doi.org/10.3390/math12223494
Journal volume & issue
Vol. 12, no. 22
p. 3494

Abstract

Read online

In the Heisenberg group Hn, we obtain the local second-order HWloc2,2-regularity for the weak solution u to a class of degenerate parabolic quasi-linear equations ∂tu=∑i=12nXiAi(Xu) modeled on the parabolic p-Laplacian equation. Specifically, when 2≤p≤4, we demonstrate the integrability of (∂tu)2, namely, ∂tu∈Lloc2; when 2≤p3, we demonstrate the HWloc2,2-regularity of u, namely, XXu∈Lloc2. For the HWloc2,2-regularity, when p≥2, the range of p is optimal compared to the Euclidean case.

Keywords