Pharmaceutical Biology (Jan 2018)

Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling

  • Pengyu Zhang,
  • Yiting Lee,
  • Xiying Wei,
  • Jinlan Wu,
  • Qingmei Liu,
  • Shanning Wan

DOI
https://doi.org/10.1080/13880209.2018.1481108
Journal volume & issue
Vol. 56, no. 1
pp. 357 – 362

Abstract

Read online

Context: Tanshinone IIA, commercially produced from Salvia miltiorrhiza Bunge (C.Y.Wu) (Labiatae), has various biological benefits. Currently, this compound is mainly extracted from plants. However, because of the long growth cycle and the unstable quality of plants, the market demands can barely be satisfied. Objective: The genomic shuffling technology is applied to screen the high-yield tanshinone IIA strain, which could be used to replace the plant S. miltiorrhiza for the production of tanshinone IIA. The change in the production of tanshinone IIA is clarified by comparing it with the original strain. Materials and methods: Tanshinone IIA was extracted from Strains cells, which was prepared through 0.5 mL protoplast samples by using hypertonic solution I from two different strains. Then, it was analyzed by high-performance liquid chromatography at 30 °C and UV 270 nm. Total DNA from the strains was extracted for RAPD amplification and electrophoresis to isolate the product. Results: In this study, a high-yield tanshinone IIA strain F-3.4 was screened and the yield of tanshinone IIA was increased by 387.56 ± 0.02 mg/g, 11.07 times higher than that of the original strain TR21. Discussion: This study shows that the genetic basis of high-yield strains is achieved through genome shuffling, which proves that genome shuffling can shorten the breeding cycle and improve the mutagenesis efficiency in obtaining the strains with good traits and it is a useful method for the molecular breeding of industrial strains.

Keywords