The Potential of the Marine Microalga <i>Diacronema lutheri</i> in the Prevention of Obesity and Metabolic Syndrome in High-Fat-Fed Wistar Rats
Claire Mayer,
Martine Côme,
Lionel Ulmann,
Isabelle Martin,
Graziella Chini Zittelli,
Cecilia Faraloni,
Khadija Ouguerram,
Benoît Chénais,
Virginie Mimouni
Affiliations
Claire Mayer
Département Génie Biologique, BiOSSE, Biology of Organisms: Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
Martine Côme
Département Génie Biologique, BiOSSE, Biology of Organisms: Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
Lionel Ulmann
Département Génie Biologique, BiOSSE, Biology of Organisms: Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
Isabelle Martin
Département Génie Biologique, BiOSSE, Biology of Organisms: Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
Graziella Chini Zittelli
Department of Biology, Agriculture and Food Sciences, Institute for BioEconomy, National Research Council, Sesto Fiorentino, I-50019 Florence, Italy
Cecilia Faraloni
Department of Biology, Agriculture and Food Sciences, Institute for BioEconomy, National Research Council, Sesto Fiorentino, I-50019 Florence, Italy
Khadija Ouguerram
UMR1280 PhAN, Physiopathology of Nutritional Adaptations, INRAe, CHU Hôtel Dieu, IMAD, CRNH Ouest, Nantes Université, F-44000 Nantes, France
Benoît Chénais
BiOSSE, Biology of Organisms: Stress, Health, Environment, UFR Sciences et Techniques, Le Mans Université, F-72085 Le Mans, France
Virginie Mimouni
Département Génie Biologique, BiOSSE, Biology of Organisms: Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
Long-chain polyunsaturated fatty acids n-3 series (n-3 LC-PUFAs), especially eicosapentaenoic and docosahexaenoic acids, are known to exert preventive effects on obesity and metabolic syndrome. Mainly consumed in the form of fish oil, LC-PUFAs n-3 are also found in significant quantities in other sources such as certain microalgae. The aim of this study was to evaluate the effects of Diacronema lutheri (Dia), a microalga rich in n-3 LC-PUFAs, on metabolic disorders associated with obesity. Three groups of male Wistar rats (n = 6 per group) were submitted for eight weeks to a standard diet or high-fat and high-fructose diet (HF), supplemented or not with 12% of Dia (HF-Dia). Compared to HF rats, HF-Dia rats showed a 41% decrease in plasma triacylglycerol (TAG) and an increase in plasma cholesterol (+35%) as well as in high-density lipoprotein cholesterol (+51%) without change to low-density lipoprotein cholesterol levels. Although fasting glycemia did not change, glucose and insulin tolerance tests highlighted an improvement in glucose and insulin homeostasis. Dia supplementation restored body weight and fat mass, and decreased levels of liver TAG (−75%) and cholesterol (−84%). In HF-Dia rats, leptin was decreased (−30%) below the control level corresponding to a reduction of 68% compared to HF rats. Similarly, the anti-inflammatory cytokines interleukin-4 (IL-4) and IL-10 were restored up to control levels, corresponding to a 74% and 58% increase in HF rats, respectively. In contrast, the level of IL-6 remained similar in the HF and HF-Dia groups and about twice that of the control. In conclusion, these results indicated that the D. lutheri microalga may be beneficial for the prevention of weight gain and improvement in lipid and glucose homeostasis.