Botanical Studies (Sep 2022)
Cypripedium subtropicum embryo development and cytokinin requirements for asymbiotic germination
Abstract
Abstract Background Cypripedium subtropicum is a unique, endangered lady’s slipper orchid with evergreen leaves on non-dormant shoots that is native to southwestern China. This study documents the major developmental events in C. subtropicum seed development from fertilization to seed maturity, determines the optimum period for seed collection, and examines the cytokinin requirements for asymbiotic germination and protocorm survival. Results Structural studies revealed that embryo development proceeded after successful fertilization at 60 days after pollination (DAP). At 105 DAP, a globular embryo with the shrinking inner seed coat was observed, and seeds collected at this time point exhibited optimal germination. After 120 DAP, most seeds had a mature embryo within the capsule, and within the cells of the embryo proper, numerous proteins/lipid bodies were present as the main storage products. In addition, the inner seed coat had compressed into a thin layer that tightly enclosed the embryo, while the outer seed coat had progressively elongated, resulting in a hair-like appearance of the mature seed. Histochemical staining using Nile red and toluidine blue O (TBO) indicated that the lignified inner and outer seed coats may lead to coat-imposed dormancy. Seeds collected at this stage germinated poorly. Analyses of cytokinin preferences and optimal concentrations for germination and protocorm survival showed that both 6-(γ,γ-dimethylallylamino) purine (2iP) and 6-benzylaminopurine (BA) enhanced germination compared with the control, although higher concentrations of BA (4 and 8 μM) suppressed germination. The protocorm survival rate improved with increasing 2iP concentration. Conclusions This study provides a reproducible procedure for culturing immature seeds of C. subtropicum based on a defined time schedule of seed development. In addition, the cytokinin 2iP was shown to improve germination and protocorm survival. This study provides a scientific basis for seedling establishment through asymbiotic seed culture for further reintroduction efforts.
Keywords