Geosciences (Oct 2022)
Elemental and K-Ar Isotopic Signatures of Glauconite/Celadonite Pellets from a Metallic Deposit of Missouri: Genetic Implications for the Local Deposits
Abstract
In the course of attempting to date the host rocks of Viburnum metal deposits from the US state of Missouri, the purpose was here a detailed examination and contribution of the constitutive minerals of glauconite-rich pellets to the isotopic dating of these deposits. The glauconite pellets of Cambrian sediments hosting metal concentrates were dated here by the K-Ar method to complement earlier published Rb-Sr data. The study confirmed that the preparation and purification step of such glauconite pellets is especially critical with the need for a specific cleaning step to not only remove the detrital counterparts but also all Sr-rich components occurring as accessory minerals such as the carbonates, sulfates and oxides that apparently “contaminated” the Rb-Sr results. The K-Ar data and the previously released Rb-Sr results obtained on strictly the same glauconite-rich separates outline clear age discrepancies that can be summarized by higher, “older” K-Ar age data at about 440, 415 and 390 Ma, and lower, “younger” Rb-Sr data at about 400 and 370 Ma. The glauconite separates of most samples being apparently not contaminated by various detrital K-rich crystals, the two dating methods should have been affected similarly. The analytical dispersion seems, then, to result from a diagenetic event that affected the Rb-Sr system more than the K-Ar system by a plausible addition/subtraction of one or several Sr-rich and Rb-poor and, therefore, K-poor minerals. In turn, the studied pellets were apparently impregnated after deposition by flowing metal-rich fluids in a low-temperature environment not affected by a significant thermal impact. The Bonneterre Formation acted apparently as a regional drain for metal-rich fluids that percolated throughout the region at a probable burial depth of less than 2000 m.
Keywords