Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
Richard E Passingham
Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
Nicola Sibson
Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
Saad Jbabdi
Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
Comparing the brains of related species faces the challenges of establishing homologies whilst accommodating evolutionary specializations. Here we propose a general framework for understanding similarities and differences between the brains of primates. The approach uses white matter blueprints of the whole cortex based on a set of white matter tracts that can be anatomically matched across species. The blueprints provide a common reference space that allows us to navigate between brains of different species, identify homologous cortical areas, or to transform whole cortical maps from one species to the other. Specializations are cast within this framework as deviations between the species’ blueprints. We illustrate how this approach can be used to compare human and macaque brains.