Journal of Pure and Applied Microbiology (Dec 2022)

Effect of Carbonyl Cyanide M-chlorophenylhydrazone on Ciprofloxacin Resistance and Biofilm Formation in Hospital-acquired Uropathogenic Escherichia coli and Klebsiella pneumoniae

  • Rasha Hassan El-Mahdy,
  • Ghada El-Saeed Mashaly

DOI
https://doi.org/10.22207/JPAM.16.4.59
Journal volume & issue
Vol. 16, no. 4
pp. 2864 – 2873

Abstract

Read online

Antibiotic resistant and biofilm forming uropathogenic Enterobacteriaceae are rising. This study was conducted to evaluate the efflux pump and plasmid mediated efflux genes in ciprofloxacin (CIP) resistant hospital acquired uropathogenic Escherichia coli and Klebsiella pneumoniae. Also, to assess the anti-biofilm action of carbonyl cyanide m-chlorophenylhydrazone (CCCP). Uropathogenic E. coli and K. pneumoniae isolates were collected from Mansoura University Hospitals in Mansoura, Egypt. The effect of Sub- minimum inhibitory concentration (MIC) of CCCP on CIP MIC was evaluated and the MIC decrease factor (MDF) was calculated. The presence of oqxAB and qepA genes was detected by PCR. The effect CCCP on biofilm was detected in strong biofilm formers. 56 and 47 CIP-resistant uropathogenic E. coli and K. pneumoniae isolates respectively were detected. Significant MDF by CCCP was observed in 55.3% of these isolates. The qepA gene was only present in E. coli. However, oqxAB genes were found only in K. pneumoniae. Biofilm formation was detected in 58.9% and 72.3% of CIP-resistant E. coli and K. pneumoniae isolates, respectively. Biofilm formation was significantly decreased by CCCP. According to these findings, CIP resistance and plasmid-mediated efflux pumps in uropathogenic E. coli and K. pneumoniae are of rising concern. Efflux pump inhibitor CCCP represents a possible option to decrease the biofilm formation in these resistant urinary pathogens.

Keywords