Nature Communications (Oct 2022)

Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces

  • Taemin Kim,
  • Yejee Shin,
  • Kyowon Kang,
  • Kiho Kim,
  • Gwanho Kim,
  • Yunsu Byeon,
  • Hwayeon Kim,
  • Yuyan Gao,
  • Jeong Ryong Lee,
  • Geonhui Son,
  • Taeseong Kim,
  • Yohan Jun,
  • Jihyun Kim,
  • Jinyoung Lee,
  • Seyun Um,
  • Yoohwan Kwon,
  • Byung Gwan Son,
  • Myeongki Cho,
  • Mingyu Sang,
  • Jongwoon Shin,
  • Kyubeen Kim,
  • Jungmin Suh,
  • Heekyeong Choi,
  • Seokjun Hong,
  • Huanyu Cheng,
  • Hong-Goo Kang,
  • Dosik Hwang,
  • Ki Jun Yu

DOI
https://doi.org/10.1038/s41467-022-33457-9
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

Designing an efficient platform that enables verbal communication without vocalization remains a challenge. Here, the authors propose a silent speech interface by utilizing a deep learning algorithm combined with strain sensors attached near the subject’s mouth, able to collect 100 words and classify at a high accuracy rate.