Heliyon (Jun 2023)
Hungarian and Indonesian rice husk as bioadsorbents for binary biosorption of cationic dyes from aqueous solutions: A factorial design analysis
Abstract
The wastewater of the dye industry can be characterized by a complex chemical composition and consists of numerous dyes. Bioadsorbents are increasingly applied for the biosorption of dyes because they are inexpensive and environmentally friendly. Rice husk (RH) is a potential agricultural waste that can be converted into a bioadsorbents for the biosorption of cationic dyes. Herein, the removal of methylene blue (MB) and basic red 9 (BR9) dyes by Hungarian rice husk (HRH) and Indonesian rice husk (IRH) using binary biosorption was investigated. Adsorbents were characterized by zeta potential, Fourier-transform infrared spectroscopy, and scanning electron microscopy. Batch biosorption evaluated the influence of different variables, including pH, adsorbent dose, contact time, and initial concentrations. Several factors that influence the biosorption of MB and BR9 onto rice husk were assessed using main effect, Pareto charts, normal probability plots, and interaction effect in a factorial design. The optimum contact time was 60 min. Isotherm and kinetic models of MB and BR9 in binary biosorption fitted to the Brunauer–Emmett–Teller multilayer and the Elovich equation based on correlation coefficients and nonlinear chi-square. Results showed that the biosorption capacity of HRH was 10.4 mg/g for MB and 10 mg/g for BR9; values for IRH were 9.3 mg/g and 9.6 mg/g, respectively. Therefore, HRH and IRH were found to be effective adsorbents for removing MB and BR9 via binary biosorption.