Research (Jan 2019)

Tuning Superhydrophobic Materials with Negative Surface Energy Domains

  • Zhongzhen Wu,
  • Liangliang Liu,
  • Shunning Li,
  • Shunping Ji,
  • Pinghu Chen,
  • Suihan Cui,
  • Zhengyong Ma,
  • Yuchang Weng,
  • Qian Huang,
  • Zhongcan Wu,
  • Hao Wu,
  • Yuan Lin,
  • Ricky K. Y. Fu,
  • Hai Lin,
  • Xiubo Tian,
  • Paul K. Chu,
  • Feng Pan

DOI
https://doi.org/10.34133/2019/1391804
Journal volume & issue
Vol. 2019

Abstract

Read online

Hydrophobic/superhydrophobic materials with intrinsic water repellence are highly desirable in engineering fields including anti-icing in aerocrafts, antidrag and anticorrosion in ships, and antifog and self-cleaning in optical lenses, screen, mirrors, and windows. However, superhydrophobic material should have small surface energy (SE) and a micro/nanosurface structure which can reduce solid-liquid contact significantly. The low SE is generally found in organic materials with inferior mechanical properties that is undesirable in engineering. Intriguingly, previous theoretical calculations have predicted a negative SE for θ-alumina (θ-Al2O3), which inspires us to use it as a superhydrophobic material. Here, we report the experimental evidence of the small/negative SE of θ-Al2O3 and a θ-Al2O3-based superhydrophobic coating prepared by one-step scalable plasma arcing oxidation. The superhydrophobic coating has complete ceramic and desired micro/nanostructure and therefore exhibits excellent aging resistance, wear resistance, corrosion resistance, high-temperature tolerance, and burning resistance. Owing to the rarity of the small/negative SE in inorganic materials, the concept to reduce SE by θ-Al2O3 may foster a blowout to develop robust superhydrophobicity by complete inorganic materials.