Heliyon (Jun 2024)

Identification of key biomarkers of endothelial dysfunction in hypertension with carotid atherosclerosis based on WGCNA and the LASSO algorithm

  • Yimin Wang,
  • Xinyang Shou,
  • Yuteng Wu,
  • Jun Chen,
  • Rui Zeng,
  • Qiang Liu

Journal volume & issue
Vol. 10, no. 12
p. e32966

Abstract

Read online

Background: Endothelial dysfunction is the early stage of carotid atherosclerosis (CAS) in patients with hypertension. It is worth identifying the potential hub genes of endothelial dysfunction to elucidate pathological mechanism in the progression of the disease. Method: We obtained gene expression profiles of GSE43292 from the Gene Expression Omnibus (GEO) database. Hub genes associated with CAS were identified through weighted gene correlation network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) regression. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore potential biological mechanisms and signaling pathways. Finally, in vitro experiments on human umbilical vein endothelial cells (HUVECs) were conducted to validate these hub genes. Results: The microarray dataset GSE43292 included 32 CAS plaques samples and corresponding macroscopically intact tissues from patients with hypertension. A total of 161 differentially expressed genes were discovered. Through WGCNA analysis, the gray60 module emerged as the most significant module associated with clinical features. The GO and KEGG enrichment analyses of genes in the gray60 module highlighted the substantial involvement of immune response–related signaling pathways. Two key hub genes (CCR1 and NCKAP1L) were pinpointed via LASSO regression. We found a significant increase in the mRNA expression level of the hub genes in oxidized low density lipoprotein (ox-LDL) treated HUVECs. Conclusions: Our study indicated that the hub genes related to immune responses are involved in the development of CAS. Two hub genes (CCR1 and NCKAP1L) of endothelial dysfunction were identified. These genes may provide a valuable therapeutic target of CAS in patients with hypertension.

Keywords