Scientific Reports (Jan 2022)

Electrochemical performance of composite electrodes based on rGO, Mn/Cu metal–organic frameworks, and PANI

  • Quoc Bao Le,
  • Thanh-Huong Nguyen,
  • Haojie Fei,
  • Constantin Bubulinca,
  • Lukas Munster,
  • Nikola Bugarova,
  • Matej Micusik,
  • Rudolf Kiefer,
  • Tran Trong Dao,
  • Maria Omastova,
  • Natalia E. Kazantseva,
  • Petr Saha

DOI
https://doi.org/10.1038/s41598-021-04409-y
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Benzendicarboxylic acid (BDC)-based metal–organic frameworks (MOFs) have been widely utilized in various applications, including supercapacitor electrode materials. Manganese and copper have solid diamond frames formed with BDC linkers among transition metals chosen for MOF formation. They have shown the possibility to enlarge capacitance at different combinations of MOFs and polyaniline (PANI). Herein, reduced graphene oxide (rGO) was used as the matrix to fabricate electrochemical double-layer SCs. PANI and Mn/Cu-MOF's effect on the properties of electrode materials was investigated through electrochemical analysis. As a result, the highest specific capacitance of about 276 F/g at a current density of 0.5 A/g was obtained for rGO/Cu-MOF@PANI composite.