Diagnostics (Oct 2024)
Assessment of the Breast Density Prevalence in Swiss Women with a Deep Convolutional Neural Network: A Cross-Sectional Study
Abstract
Background/Objectives: High breast density is a risk factor for breast cancer and can reduce the sensitivity of mammography. Given the influence of breast density on patient risk stratification and screening accuracy, it is crucial to monitor the prevalence of extremely dense breasts within local populations. Moreover, there is a lack of comprehensive understanding regarding breast density prevalence in Switzerland. Therefore, this study aimed to determine the prevalence of breast density in a selected Swiss population. Methods: To overcome the potential variability in breast density classifications by human readers, this study utilized commercially available deep convolutional neural network breast classification software. A retrospective analysis of mammographic images of women aged 40 years and older was performed. Results: A total of 4698 mammograms from women (58 ± 11 years) were included in this study. The highest prevalence of breast density was in category C (heterogeneously dense), which was observed in 41.5% of the cases. This was followed by category B (scattered areas of fibroglandular tissue), which accounted for 22.5%. Conclusions: Notably, extremely dense breasts (category D) were significantly more common in younger women, with a prevalence of 34%. However, this rate dropped sharply to less than 10% in women over 55 years of age.
Keywords