Frontiers in Physics (Feb 2023)

Kinetic model of resonant nanoantennas in polymer for laser induced fusion

  • István Papp,
  • István Papp,
  • Larissa Bravina,
  • Mária Csete,
  • Mária Csete,
  • Archana Kumari,
  • Archana Kumari,
  • Igor N. Mishustin,
  • Anton Motornenko,
  • Péter Rácz,
  • Péter Rácz,
  • Leonid M. Satarov,
  • Horst Stöcker,
  • Horst Stöcker,
  • Horst Stöcker,
  • Daniel D. Strottman,
  • András Szenes,
  • András Szenes,
  • Dávid Vass,
  • Dávid Vass,
  • Ágnes Nagyné Szokol,
  • Ágnes Nagyné Szokol,
  • Judit Kámán,
  • Judit Kámán,
  • Attila Bonyár,
  • Tamás S. Biró,
  • Tamás S. Biró,
  • László P. Csernai,
  • László P. Csernai,
  • László P. Csernai,
  • László P. Csernai,
  • László P. Csernai,
  • Norbert Kroó,
  • Norbert Kroó,
  • Norbert Kroó

DOI
https://doi.org/10.3389/fphy.2023.1116023
Journal volume & issue
Vol. 11

Abstract

Read online

Studies of resilience of light-resonant nanoantennas in vacuum are extended to consider the case of polymer embedding. This modifies the nanoantenna’s lifetime and resonant laser pulse energy absorption. The effective resonance wavelength is shortened, the peak momentum of resonantly oscillating electrons in the nanorod is reduced by one-third, while the available lifespan of the resonance condition remains the same. This response is expected to strengthen the laser pulse induced nuclear fusion processes. Related numerical simulations were performed using particle-in-cell method in a simulation box of the size 0.223 μm3, treating the conduction electrons as strongly coupled plasma. In the modeling the polymer background was added with the experimentally measured refractive index of 1.53.

Keywords