Physicochemical Properties and Liposomal Formulations of Hydrolysate Fractions of Four Sea Cucumbers (Holothuroidea: Echinodermata) from the Northwestern Algerian Coast
Asmaa Mecheta,
Amine Hanachi,
Carole Jeandel,
Elmira Arab-Tehrany,
Arnaud Bianchi,
Emilie Velot,
Karim Mezali,
Michel Linder
Affiliations
Asmaa Mecheta
Laboratory of Protection and Development of Coastal Marine Resources and Molecular Systematics, Department of Marine Sciences and Aquaculture, Faculty of Natural and Life Sciences, Abdelhamid Ibn Badis University Mostaganem, BP 227, National road N° 11, Kharrouba 27000, Mostaganem, Algeria
Amine Hanachi
Laboratoire d’Ingénierie des Biomolécules (LIBio), Lorraine University, 2, Forêt de Haye avenue TSA 40602, 54518 Vandœuvre CEDEX, France
Carole Jeandel
Laboratoire d’Ingénierie des Biomolécules (LIBio), Lorraine University, 2, Forêt de Haye avenue TSA 40602, 54518 Vandœuvre CEDEX, France
Elmira Arab-Tehrany
Laboratoire d’Ingénierie des Biomolécules (LIBio), Lorraine University, 2, Forêt de Haye avenue TSA 40602, 54518 Vandœuvre CEDEX, France
Arnaud Bianchi
UMR 7365 CNRS- Molecular Engineering and Articular Physiopathology, 9 Forêt de Haye Avenue, BP 20199, 54505 Vandœuvre-Lès-Nancy, France
Emilie Velot
Faculty of Pharmacy, Laboratory of Practical Work in Physiology, Lorraine University, Brabois-Health Campus, 7 Forêt de Haye Avenue, BP 90170, F-54505 Vandœuvre-lès-Nancy CEDEX, France
Karim Mezali
Laboratory of Protection and Development of Coastal Marine Resources and Molecular Systematics, Department of Marine Sciences and Aquaculture, Faculty of Natural and Life Sciences, Abdelhamid Ibn Badis University Mostaganem, BP 227, National road N° 11, Kharrouba 27000, Mostaganem, Algeria
Michel Linder
Laboratoire d’Ingénierie des Biomolécules (LIBio), Lorraine University, 2, Forêt de Haye avenue TSA 40602, 54518 Vandœuvre CEDEX, France
To promote the nutritional and pharmacological values of four sea cucumber species (Holothuria poli, H. tubulosa, H. arguinensis, and H. sanctori), harvested from the Algerian coast, we aimed to study their proximate composition, fatty acid profile and angiotensin-converting enzyme (ACE) inhibitory activity. Their phospholipids were also used to elaborate nanoliposomes and to encapsulate peptides obtained from the same source. After the physico-chemical characterization of nanoliposomes and peptides, in vitro analyses were realized. The four holothurian species showed a high amount of protein (49.26–69.34%), and an impressive lipid profile of 27 fatty acids, mainly composed of polar fatty acids (91.16–93.85%), with a high polyunsaturated fatty acids (PUFA) content (50.90–71.80%), particularly eicosapentaenoic acid (EPA) (5.07–8.76%) and docosahexaenoic acid (DHA) (4.86–7.25%). A high phospholipids amount was also found (55.20–69.85%), mainly composed of phosphatidylcholine (PC) (51.48–58.56%). Their peptide fractions exhibited a high ACE inhibitory activity (IC50 0.30 to 0.51 mg/mL). The results also showed that the nanoliposomes do not induce cytotoxicity and cell death in human MSCs and no perturbation of proliferation for all the times and the tested concentrations, as well as the combined nanoliposomes and hydrolysates (HTS) at a concentration of 0.1 mg/mL. All four sea cucumbers show potential as a new source for omega-3, omega-6, and bioactive peptides.