Nature Communications (Nov 2023)
Evaluation of the US COVID-19 Scenario Modeling Hub for informing pandemic response under uncertainty
- Emily Howerton,
- Lucie Contamin,
- Luke C. Mullany,
- Michelle Qin,
- Nicholas G. Reich,
- Samantha Bents,
- Rebecca K. Borchering,
- Sung-mok Jung,
- Sara L. Loo,
- Claire P. Smith,
- John Levander,
- Jessica Kerr,
- J. Espino,
- Willem G. van Panhuis,
- Harry Hochheiser,
- Marta Galanti,
- Teresa Yamana,
- Sen Pei,
- Jeffrey Shaman,
- Kaitlin Rainwater-Lovett,
- Matt Kinsey,
- Kate Tallaksen,
- Shelby Wilson,
- Lauren Shin,
- Joseph C. Lemaitre,
- Joshua Kaminsky,
- Juan Dent Hulse,
- Elizabeth C. Lee,
- Clifton D. McKee,
- Alison Hill,
- Dean Karlen,
- Matteo Chinazzi,
- Jessica T. Davis,
- Kunpeng Mu,
- Xinyue Xiong,
- Ana Pastore y Piontti,
- Alessandro Vespignani,
- Erik T. Rosenstrom,
- Julie S. Ivy,
- Maria E. Mayorga,
- Julie L. Swann,
- Guido España,
- Sean Cavany,
- Sean Moore,
- Alex Perkins,
- Thomas Hladish,
- Alexander Pillai,
- Kok Ben Toh,
- Ira Longini,
- Shi Chen,
- Rajib Paul,
- Daniel Janies,
- Jean-Claude Thill,
- Anass Bouchnita,
- Kaiming Bi,
- Michael Lachmann,
- Spencer J. Fox,
- Lauren Ancel Meyers,
- Ajitesh Srivastava,
- Przemyslaw Porebski,
- Srini Venkatramanan,
- Aniruddha Adiga,
- Bryan Lewis,
- Brian Klahn,
- Joseph Outten,
- Benjamin Hurt,
- Jiangzhuo Chen,
- Henning Mortveit,
- Amanda Wilson,
- Madhav Marathe,
- Stefan Hoops,
- Parantapa Bhattacharya,
- Dustin Machi,
- Betsy L. Cadwell,
- Jessica M. Healy,
- Rachel B. Slayton,
- Michael A. Johansson,
- Matthew Biggerstaff,
- Shaun Truelove,
- Michael C. Runge,
- Katriona Shea,
- Cécile Viboud,
- Justin Lessler
Affiliations
- Emily Howerton
- The Pennsylvania State University
- Lucie Contamin
- University of Pittsburgh
- Luke C. Mullany
- Johns Hopkins University Applied Physics Lab
- Michelle Qin
- Harvard University
- Nicholas G. Reich
- University of Massachusetts Amherst
- Samantha Bents
- National Institutes of Health Fogarty International Center
- Rebecca K. Borchering
- The Pennsylvania State University
- Sung-mok Jung
- University of North Carolina at Chapel Hill
- Sara L. Loo
- Johns Hopkins University
- Claire P. Smith
- Johns Hopkins University
- John Levander
- University of Pittsburgh
- Jessica Kerr
- University of Pittsburgh
- J. Espino
- University of Pittsburgh
- Willem G. van Panhuis
- National Institute of Allergy and Infectious Diseases
- Harry Hochheiser
- University of Pittsburgh
- Marta Galanti
- Columbia University
- Teresa Yamana
- Columbia University
- Sen Pei
- Columbia University
- Jeffrey Shaman
- Columbia University
- Kaitlin Rainwater-Lovett
- Johns Hopkins University Applied Physics Lab
- Matt Kinsey
- Johns Hopkins University Applied Physics Lab
- Kate Tallaksen
- Johns Hopkins University Applied Physics Lab
- Shelby Wilson
- Johns Hopkins University Applied Physics Lab
- Lauren Shin
- Johns Hopkins University Applied Physics Lab
- Joseph C. Lemaitre
- University of North Carolina at Chapel Hill
- Joshua Kaminsky
- Johns Hopkins University
- Juan Dent Hulse
- Johns Hopkins University
- Elizabeth C. Lee
- Johns Hopkins University
- Clifton D. McKee
- Johns Hopkins University
- Alison Hill
- Johns Hopkins University
- Dean Karlen
- University of Victoria
- Matteo Chinazzi
- Northeastern University
- Jessica T. Davis
- Northeastern University
- Kunpeng Mu
- Northeastern University
- Xinyue Xiong
- Northeastern University
- Ana Pastore y Piontti
- Northeastern University
- Alessandro Vespignani
- Northeastern University
- Erik T. Rosenstrom
- North Carolina State University
- Julie S. Ivy
- North Carolina State University
- Maria E. Mayorga
- North Carolina State University
- Julie L. Swann
- North Carolina State University
- Guido España
- University of Notre Dame
- Sean Cavany
- University of Notre Dame
- Sean Moore
- University of Notre Dame
- Alex Perkins
- University of Notre Dame
- Thomas Hladish
- University of Florida
- Alexander Pillai
- University of Florida
- Kok Ben Toh
- Northwestern University
- Ira Longini
- University of Florida
- Shi Chen
- University of North Carolina at Charlotte
- Rajib Paul
- University of North Carolina at Charlotte
- Daniel Janies
- University of North Carolina at Charlotte
- Jean-Claude Thill
- University of North Carolina at Charlotte
- Anass Bouchnita
- University of Texas at El Paso
- Kaiming Bi
- University of Texas at Austin
- Michael Lachmann
- Santa Fe Institute
- Spencer J. Fox
- University of Georgia
- Lauren Ancel Meyers
- University of Texas at Austin
- Ajitesh Srivastava
- University of Southern California
- Przemyslaw Porebski
- University of Virginia
- Srini Venkatramanan
- University of Virginia
- Aniruddha Adiga
- University of Virginia
- Bryan Lewis
- University of Virginia
- Brian Klahn
- University of Virginia
- Joseph Outten
- University of Virginia
- Benjamin Hurt
- University of Virginia
- Jiangzhuo Chen
- University of Virginia
- Henning Mortveit
- University of Virginia
- Amanda Wilson
- University of Virginia
- Madhav Marathe
- University of Virginia
- Stefan Hoops
- University of Virginia
- Parantapa Bhattacharya
- University of Virginia
- Dustin Machi
- University of Virginia
- Betsy L. Cadwell
- Centers for Disease Control and Prevention
- Jessica M. Healy
- Centers for Disease Control and Prevention
- Rachel B. Slayton
- Centers for Disease Control and Prevention
- Michael A. Johansson
- Centers for Disease Control and Prevention
- Matthew Biggerstaff
- Centers for Disease Control and Prevention
- Shaun Truelove
- Johns Hopkins University
- Michael C. Runge
- U.S. Geological Survey Eastern Ecological Science Center
- Katriona Shea
- The Pennsylvania State University
- Cécile Viboud
- National Institutes of Health Fogarty International Center
- Justin Lessler
- University of North Carolina at Chapel Hill
- DOI
- https://doi.org/10.1038/s41467-023-42680-x
- Journal volume & issue
-
Vol. 14,
no. 1
pp. 1 – 15
Abstract
Abstract Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections.